Coherence functions with applications in large-margin classification methods
نویسندگان
چکیده
Support vector machines (SVMs) naturally embody sparseness due to their use of hinge loss functions. However, SVMs can not directly estimate conditional class probabilities. In this paper we propose and study a family of coherence functions, which are convex and differentiable, as surrogates of the hinge function. The coherence function is derived by using the maximum-entropy principle and is characterized by a temperature parameter. It bridges the hinge function and the logit function in logistic regression. The limit of the coherence function at zero temperature corresponds to the hinge function, and the limit of the minimizer of its expected error is the minimizer of the expected error of the hinge loss. We refer to the use of the coherence function in large-margin classification as “C -learning,” and we present efficient coordinate descent algorithms for the training of regularized C -learning models.
منابع مشابه
Multicategory large margin classification methods: Hinge losses vs. coherence functions
Article history: Received 3 August 2013 Received in revised form 9 May 2014 Accepted 16 June 2014 Available online 20 June 2014
متن کاملCoherence Functions for Multicategory Margin-based Classification Methods
Margin-based classification methods are typically devised based on a majorizationminimization procedure, which approximately solves an otherwise intractable minimization problem defined with the 0-l loss. The extension of such methods from the binary classification setting to the more general multicategory setting turns out to be nontrivial. In this paper, our focus is to devise margin-based cl...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملImproving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 13 شماره
صفحات -
تاریخ انتشار 2012